
www.OpenSourceForU.com | OPEN SOURCE FOR YOU | OCTOBER 2019 | 61

DevelopersHow To

comment-wrapper.tpl.php

node.tpl.php

block.tpl.php

region.tpl.php

page.tpl.php

html.tpl.php

style.css

define block regions
define styles

example.info

Drupal

screenshot.png

images

comment.tpl.php

template.php

logo.png

C reating and customising themes in Drupal 8 is easy
because of a modern template engine for PHP named
Twig, which is a part of the Symfony 2 framework.

Moving from a PHP template to Twig, and from the INI
format to YAML, are some of the main changes in Drupal
8 theming. These changes in Drupal 8 have improved the
security and inheritance, making theming more distinguished.

With reference to Figure 1,
 � .info provides information about your theme.
 � html.tpl.php displays the basic HTML structure of a

single Drupal page.

Creating Custom
Themes in Drupal 8

A theme in a website is a set of files that defines the overall look and the user
experience of a website. It usually comprises all the graphical elements such as
colours and window decorations that help the user to customise the website.
Drupal provides the user with a bunch of basic themes for a website that are
very generic. However, these default themes do not suit all types of users. So

there is a need to build themes that meet one’s requirements.

 � page.tpl.php is the main template that defines the contents
on most of the pages.

 � style.css is the CSS file that sets the CSS rules for the template.
 � node.tpl.php defines the contents of the nodes.
 � block.tpl.php defines the contents in the blocks.
 � comment.tpl.php defines the contents in the comments.
 � Template.php is used to hold preprocessors for generating

variables before they are merged with the markup
inside .tpl.php files.

 � Theme-settings.php is used to modify the entire theme
settings form.

Figure 1: Drupal 7 theme structure (https://www.drupal.org/docs/7/theming/
overview-of-theme-files)

62 | OCTOBER 2019 | OPEN SOURCE FOR YOU | www.OpenSourceForU.com

Developers How To

 � .libraries.yml defines your libraries (mostly your JS,
CSS files).

 � .breakpoints.yml defines the points to fit different screen
devices.

 � .theme is the PHP file that stores conditional logic and
data preprocessing of the variables before they are
merged with markup inside the .html.twig file.

 � /includes is where third-party libraries (like Bootstrap,
Foundation, Font Awesome, etc) are put. It is a standard
convention to store them in this folder.
The basic requirement to create a new Drupal theme is

to have Drupal localhost installed on your system.

Drupal 8 theme structure
A custom theme can be made by following the steps
mentioned below.

Step 1: Creating the custom themes folder
Go to the Drupal folder in which you can find a folder

named Theme.
 � Enter the folder ‘theme’.
 � Create a folder ‘custom’.
 � Enter the folder ‘custom’.
 � Create a folder ‘osfy’.

Start creating your theme files over here. The theme
name taken here is osfy.

Step 2: Creating a YML file
To inform the website about the existence of this theme,

we use .yml files. The basic details required in the YML are
mentioned below:
1. Name
2. Description
3. Type
4. Core

name: osfy

description: My first responsive custom theme.

type: theme

package: custom

base theme: classy

core: 8.x

regions:

head: head

 header: header

 content: content

 sidebar: sidebar

 footer: Footer

Stylesheets-remove:

-”Remove Stylesheets”

We can proceed once the theme appears in the
uninstalled section of your website’s Appearance tab.

Open the Drupal website and check for the new theme in
the Appearance section. It will be under the uninstalled list of
themes in the Appearance tab.

 Note: 1. Base theme indicates which base theme your
custom theme is going to inherit. The default base theme
provided by Drupal is ‘Stable’.

2. Regions defines the regions in which your blocks are
to be placed in your theme. If not declared, Drupal uses
default regions from the core.

Step 3: Adding the .libraries.yml file:
We have indicated all the libraries comprising JavaScript

and CSS styling, and now we will define them in the libraries.
yml file.

global-components:

 version: 1.x

css:

 theme:

 css/style.css: {}

 includes/bootstrap/css/bootstrap.css: {}

We will use style.css for the theme styling and bootstrap.
css for responsive display using Bootstrap libraries. Style.css
resides in the core/css folder, whereas bootstrap.css resides in
the includes/bootstrap/css folder.

Step 4: Creating theme regions
To better understand how Twig has made things easier,

use the following code:

<?php print render($title_prefix); ?>

 <?php if ($title): ?>

 <h1 class="title" id="page-title">

 <?php print $title; ?>

 </h1>

 <?php endif; ?>

{{ title_prefix }}

{% if title %}

 <h1 class="title" id="page-title">

{{ title }}

</h1>

{% endif %}

The template file functions are:
html.html.twig - Theme implementation for the basic

structure of a single page
page.html.twig - Theme implementation to display a

single page
node.html.twig - Default theme implementation to display

a node

www.OpenSourceForU.com | OPEN SOURCE FOR YOU | OCTOBER 2019 | 63

DevelopersHow To

region.html.twig - Default theme implementation to
display a region

block.html.twig - Default theme implementation to display
a block

field.html.twig - Theme implementation for a field
To create the page.html.twig file, give the following

commands:

/**

 * @file

 * Default theme implementation to display a single page.

 *

 * example code for basic header, footer and content page

**/

<div id="page">

 {% if page.head %}

 <section id="head">

 <div class= "container">

 {{ page.head }}

 </div>

 </section>

 {% endif %}

 <header id="header">

 <div class="container">

 {{ page.header }}

 </div>

 </header>

 <section id="main">

 <div class="container">

 <div class="row">

 <div id="content" class="col-md-10 col-sm-10 col-

xs-12">

 {{ page.content }}

 </div>

 {% if page.sidebar %}

 <aside id="sidebar" class="sidebar col-md-2 col-

sm-2 col-xs-12">

 {{ page.sidebar}}

 </aside>

 {% endif %}

 </div>

 </div>

 </section>

 {% if page.footer %}

 <footer id="footer">

 <div class="container">

 {{ page.footer }}

 </div>

 </footer>

 {% endif %}

</div>

Step 5: Enabling the theme
To place content in the respective regions, in the

Manage administrative menu, navigate to Structure > Block
layout > Custom block library (admin/structure/block/block-
content). Click Add custom block. The Add custom block
page appears. Fill in the fields and click on Save.

The block design used here is as in Figure 2.

A few more things to do
 � Place a logo.svg file in the theme folder. Drupal will

look for it by default and enable the logo for the theme.
 � To show your theme picture in the admin interface next

to your theme name, place an image screenshot.png in
your theme directory itself.

 � Use your creativity from here onwards to style and
customise the appearance of your theme.

 � While writing the code for Twig files, remember to
comment all the important information for future reference.
To make your theme work on your Drupal localhost, go

to /admin/appearance where you can find the theme ‘osfy’.
Choose the option ‘Set as default’.

You can start using your theme from now.

Figure 2: Drupal 8 theme structure

The author is an open source enthusiast and has been a part of
the Drupal organisation since 2017. He was an intern at Google
Summer of Code 2017 and a mentor at Google Code-In 2018.

 By: Bhanu Prakash Poluparthi

[1] https://www.valuebound.com/resources/blog/step-
step-guide-drupal-7-custom-theme-development

[2] https://www.drupal.org/sl/node/2827346

 References

config

osfy_theme ~/osfy_theme

css

fonts

images
includes

templates

favicon.ico

logo.svg
osfy_theme.breakpoints.yml

osfy_theme.info.yml
osfy_theme.libraries.yml

osfy_theme.theme

screenshot.png

js

